Stochastic Refinement
نویسندگان
چکیده
The research presented in this paper is motivated by the following question. How can the generality order of clauses and the relevant concepts such as refinement be adapted to be used in a stochastic search? To address this question we introduce the concept of stochastic refinement operators and adapt a framework, called stochastic refinement search. In this paper we introduce stochastic refinements of a clause as a probability distribution over a set of clauses. This probability distribution can be viewed as a prior in a stochastic ILP search. We study the properties of a stochastic refinement search as two well known Markovian approaches: 1) Gibbs sampling algorithm and 2) random heuristic search. As a Gibbs sampling algorithm, a stochastic refinement search iteratively generates random samples from the hypothesis space according to a posterior distribution. We show that a minimum sample size can be set so that in each iteration a consistent clause is generated with a high probability. We study the stochastic refinement operators within the framework of random heuristic search and use this framework to characterise stochastic search methods in some ILP systems. We also study a special case of stochastic refinement search where refinement operators are defined with respect to subsumption order relative to a bottom clause. This paper also provided some insights to explain the relative advantages of using stochastic lgg-like operators as in the ILP systems Golem and ProGolem.
منابع مشابه
Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems
Stochastic models of chemical systems are often analysed by solving the corresponding Fokker-Planck equation which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulati...
متن کاملLogic-based machine learning using a bounded hypothesis space : the lattice structure, refinement operators and a genetic algorithm approach
Rich representation inherited from computational logic makes logic-based machine learning a competent method for application domains involving relational background knowledge and structured data. There is however a trade-off between the expressive power of the representation and the computational costs. Inductive Logic Programming (ILP) systems employ different kind of biases and heuristics to ...
متن کاملTowards Optimal Combination of Shooting and Gathering Stochastic Radiosity
This paper deals with combination of shooting and gathering stochastic radiosity methods. The basic two-pass methods are reviewed and other new methods are proposed. The fundamental motivation for this paper is to develop an iterative two-pass stochastic radiosity that provides the progressive refinement feature of both types of radiosity algorithms. We want to give the user a new, better, solu...
متن کاملRefinement and Difference for Probabilistic Automata
This paper studies a difference operator for stochastic systems whose specifications are represented by Abstract Probabilistic Automata (APAs). In the case refinement fails between two specifications, the target of this operator is to produce a specification APA that represents all witness PAs of this failure. Our contribution is an algorithm that permits to approximate the difference of two de...
متن کاملAn Adaptive Partition-Based Approach for Solving Two-Stage Stochastic Programs with Fixed Recourse
We study an adaptive partition-based approach for solving two-stage stochastic programs with fixed recourse. A partition-based formulation is a relaxation of the original stochastic program, and we study a finitely converging algorithm in which the partition is adaptively adjusted until it yields an optimal solution. A solution guided refinement strategy is developed to refine the partition by ...
متن کامل